برخی قضیه های تجزیه برای خمینه های با انحنای نامثبت

thesis
abstract

در این مقاله می کوشیم برخی قضیه های تجزیه را برای فضاهای رده صفر که گروههای حاصلضربی به صورت هندسی روی آنها عمل میکنند بدست آوریم همچنین یک قضیه تجزیه را برای فضاهای ژئودزیکی فشرده با انحنای نامثبت ارائه میکنیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

برگ بندی های ریمانی تکین روی خمینه های با انحنای نامثبت

در این پایان نامه نشان می دهیم که برگ بندی ریمانی تکین کامل برش پذیر روی خمینه های فشرده با انحنای نامثبت وجود ندارد. سپس یک توصیف کلی از برگ بندی ریمانی تکین کامل برش پذیر را روی خمینه های هادامارد ارائه می دهیم. با استفاده از قضیه غوطه ور سازی، یک اثبات کوتاه از این نتیجه را در مورد برگ بندی های حاصل از عمل های قطبی ارائه می دهیم.

خمینه های فینسلریی با انحنای ریمان مربعی

در این پایان نامه‏، متر راندرز با انحنای ریمان مربعی‏، نظیر متر ریمانی‏، مورد بررسی قرار گرفت که در آن معادلات به دست آمده مترهای راندرز‎‎‎ricci ‎‎-مربعی و ‎‎r-مربعی را مشخص می کنند. به خصوص نشان داده‎‎‎ شده است که مترهای راندرز ‎‎‎‎r‎‎‎-مربعی باید دارای ‎‎‎‎s‎‎‎-انحنای ثابت باشند. در ادامه با معرفی انحنای ویل‎‎‎‎ معادلات مشخص کننده مترهای راندرز ‎‎‎‎w‎‎‎-مربعی‎ یافته شد.

15 صفحه اول

همگرایی شبه گروه های غیرخطی در فضاهایی با انحنای نامثبت

این پایان نامه درباره شار گرادیان نیم گروه ها از توابع محدب در فضاهای آدامار می باشد. نشان خواهیم داد که همگرایی مسکو دنباله ای از توابع محدب و نیم پیوسته پایین، همگرایی حلال های متناظر و همگرایی شار گرادیان نیم گروه ها را نتیجه می دهد.

منیفلد های فینسلری با انحنای پرچمی نامثبت و s-انحنای ثابت

انحنای پرچمی یک تعمیم طبیعی از انحنای برشی در هندسه ریمانی می باشد، و s-انحنا یک کمیت غیر ریمانی است که برای مترهای ریمانی صفر می شود. مترهای فینسلری غیرریمانی (نا کامل) روی زیرمجموعه بازی از r^n با انحنای پرچمی منفی و s-انحنای ثابت وجود دارند. در این پایان نامه، می خواهیم نشان دهیم که هر متر فینسلری با انحنای پرچمی منفی و s-انحنای ثابت، ریمانی است اگر که فشرده باشد. هم چنین حالت انحنای پرچمی ن...

15 صفحه اول

دورهای تحلیلی روی خمینه های مختلط

سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.

full text

قضایای نقطه ثابت برای نگاشت های چندمقداری در فضاهای متریک با انحنای نامثبت

در این پایان نامه ابتدا به مطالعه اجمالی فضاهای متریک ‍ژئودزیک باانحنای نامثبت موسوم به فضاهای (cat(0 می پردازیم. پس از مطالعه ی برخی ویژگی های این فضاها و مفهوم ?-همگرایی که تعمیمی از همگرایی ضعیف در این فضاهاست به مسئله وجود و ساختار مجموعه ی نقاط ثابت نگاشت های انقباضی در این فضاها توجه می کنیم.در ادامه همگرایی قوی (همگرایی در متر) تکرار هالپرن به نقطه ثابت نگاشت های انقباضی، انقباضی چندمقدا...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023